Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis[μ_2 -3-(1*H*-imidazol-5-yl)-2-(3-iminopropionamido)propionato- $\kappa^4 N:N',N'',O$]dicopper(II) dihydrate

Jie Shen,^a Yi-Zhi Li,^b Dong-Mei Zhang^a and Jun-Hui Chen^a*

^aState Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China, and ^bState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China Correspondence e-mail: Ilyyjz@nju.edu.cn

Received 1 September 2007; accepted 13 September 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.009 Å; R factor = 0.055; wR factor = 0.109; data-to-parameter ratio = 11.9.

In the crystal structure of the title compound, $[Cu_2(C_9H_{10}-N_4O_3)_2(H_2O)_2]\cdot 2H_2O$, there are one and a half dicopper complexes in the asymmetric unit. One dicopper complex is located on a twofold rotation axis, while the other is in a general position. Each ligand bridges a pair Cu^{II} atoms, rendering the complex circular in form. Each Cu^{II} atom has a square-pyramidal coordination geometry. The basal positions are occupied by two N atoms and one O atom from one ligand and one N atom from another ligand, while the apical position is occupied by a coordinated water molecule. All chiral C atoms have an *S* configuration. In the crystal structure, there are uncoordinated water molecules that bridge neighboring complex molecules by hydrogen bonds, forming a three-dimensional structure.

Related literature

For related literature, see: Pang & Chau (1999); Hobart *et al.* (2004); Babizhayev *et al.* (1994).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Cu}_2(\mathrm{C}_9\mathrm{H}_{10}\mathrm{N}_4\mathrm{O}_3)_2(\mathrm{H}_2\mathrm{O})_2]\cdot 2\mathrm{H}_2\mathrm{O} \\ & M_r = 643.56 \\ & \mathrm{Monoclinic}, \ C2 \\ & a = 14.598 \ (9) \ \mathrm{\AA} \\ & b = 8.627 \ (5) \ \mathrm{\AA} \\ & c = 30.508 \ (19) \ \mathrm{\AA} \\ & \beta = 90.322 \ (3)^\circ \end{split}$$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\rm min} = 0.61, T_{\rm max} = 0.67$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$
$wR(F^2) = 0.109$
S = 1.07
6743 reflections
568 parameters
1 restraint

 $V = 3842 (4) Å^{3}$ Z = 6 Mo K\alpha radiation \(\mu = 1.73 mm^{-1}\) T = 291 (2) K 0.30 \times 0.26 \times 0.24 mm

10436 measured reflections 6743 independent reflections 5342 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.030$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.77 \ {\rm e} \ {\rm \AA}^{-3}$
Absolute structure: Flack (1983),
with 2717 Friedel pairs
Flack parameter: 0.020 (15)

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2B\cdots O8^{i}$	0.85 (8)	2.18 (8)	2.945 (7)	149 (7)
$N4-H4B\cdots O3^{ii}$	0.86 (7)	1.84 (7)	2.692 (8)	168 (7)
N6−H6C···O7 ⁱⁱⁱ	0.87 (7)	2.19 (7)	2.950 (8)	147 (7)
N8−H8B····O11	0.85 (7)	1.80(7)	2.650 (6)	173 (7)
$N10-H10A\cdotsO12^{iv}$	0.87 (8)	2.23 (8)	3.061 (9)	160 (7)
$N12-H12E\cdots O6^{i}$	0.86 (7)	1.80 (8)	2.652 (7)	168 (7)
$O7 - H7B \cdot \cdot \cdot O4^{i}$	0.86 (8)	2.15 (8)	2.998 (7)	170 (7)
$O7-H7A\cdots O15^{v}$	0.83 (8)	1.85 (8)	2.678 (7)	170 (8)
O8−H8C···O14 ⁱⁱⁱ	0.96 (7)	1.83 (7)	2.734 (6)	158 (6)
$O8-H8D\cdots O1^{iii}$	0.95 (7)	2.05 (7)	2.988 (6)	166 (6)
$O8-H8D\cdots O2^{iii}$	0.95 (7)	2.57 (7)	3.317 (6)	135 (5)
$O12-H12C\cdots O9^{iv}$	0.85 (8)	2.40 (8)	3.032 (7)	131 (7)
$O12-H12C\cdots O10^{iv}$	0.85 (8)	2.40 (8)	3.223 (6)	162 (7)
O12−H12B···O13	0.85 (8)	2.03 (8)	2.698 (7)	134 (7)
$O13-H13B\cdots O10^{vi}$	0.84 (8)	1.92 (9)	2.661 (7)	147 (9)
O13−H13D···O6	0.85 (9)	1.94 (9)	2.734 (7)	155 (8)
$O14-H14B\cdots O5$	0.85 (8)	1.92 (9)	2.701 (8)	153 (8)
$O14-H14D\cdots O11^{vi}$	0.84 (8)	1.97 (8)	2.757 (7)	155 (8)
$O15-H15C \cdot \cdot \cdot O2^{vii}$	0.86 (7)	1.92 (7)	2.722 (7)	154 (7)
$O15-H15E\cdots O3^{ii}$	0.85 (8)	1.93 (8)	2.718 (6)	155 (7)

Symmetry codes: (i) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (ii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + 1$; (iii) x, y + 1, z; (iv) $-x + \frac{3}{2}, y - \frac{1}{2}, -z$; (v) x, y - 1, z; (vi) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (vii) $x + \frac{1}{2}, y + \frac{1}{2}, z$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Financial support was obtained from the Application Fund of Nanjing University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2204).

References

- Babizhayev, M. A., Seguin, M. C., Gueyne, J., Evstigneeva, R. P., Ageyeva,
- E. A. & Zheltukhina, G. A. (1994). J. Biochem. **304**, 509–516. Bruker (2000). SMART (Version 5.0), SAINT (Version 6), SHELXTL (Version 6.1) and *SADABS* (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Hobart, L. J., Seibel, I., Yeargans, G. S. & Seidler, N. W. (2004). Life Sci. 75, 1379-1389.
- Pang, J. S. & Chau, L. Y. (1999). Atherosclerosis, 146, 45-52.

Acta Cryst. (2007). E63, m2569-m2570 [doi:10.1107/S160053680704473X]

$Diaquabis [\mu_2-3-(1H-imidazol-5-yl)-2-(3-iminopropionamido) propionato-$

$\kappa^4 N: N', N'', O$]dicopper(II) dihydrate

J. Shen, Y.-Z. Li, D.-M. Zhang and J.-H. Chen

Comment

It has been reported that organic copper complexes can induce apoptosis in tumor tissues (Pang & Chau, 1999). Carnosine has been extensively investigated as a physiological buffer, an antioxidant, a metal chelator and a radical scavenger (Hobart *et al.*, 2004; Babizhayev *et al.*, 1994). To study the antioxidant activity and the copper-chelating capability of carnosine, the title compound was synthesized and characterized.

There are one and half dicopper complex molecules in the asymmetric unit (Fig. 1). The dicopper complex consists of two copper atoms, two ligand molecules and two coordinated water molecules. Two ligands bridge and form a circular configuration with two copper atoms. Each copper atom adopts a square pyramidal coordination with the copper atom in the center of the square. The square is formed by two N atoms and one O atom from one ligand and one N atom from another ligand, while the axial position is occupied by a coordinated water molecule. There are three chiral carbon atoms, C2, C11 and C20 in the molecules, which are in S configuration. In the crystal packing there are uncoordinated water molecules that bridge neighboring complex molecules by hydrogen bonds and are important for the 3-D structure (Fig. 2).

Experimental

Carnosine (67.8 mg, 0.3 mmol) dissolved in 10 ml deionized water and $Cu(Ac)_2 \cdot H_20$ (0.3 mmol) dissolved in 1 ml deionized water were mixed. To the solution ethanol (4.2 ml) was added. The purple block crystal was formed after one week.

Refinement

H atoms bonded to N and O atoms were located in a difference map and their positional parameters were refined, with $U_{iso}(H) = 1.2U_{eq}(N,O)$. The refined distances are O—H = 0.83 (8)–0.96 (7) Å and N—H = 0.85 (8)–0.87 (7) Å. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the dicopper complex, showing the labeling of the non-H atoms and 30% probability ellipsoids. H atoms and free water molecules have been omitted for clarity [symmetry code: (i) 2 - x, y, -z].

Fig. 2. A packing diagram of the title compound viewed down the *a* axis. Dashed lines indicate hydrogen bounds.

Diaquabis[μ2–3-(1*H*-imidazol-5-yl)-2-(3-iminopropionamido)propionato- κ4 N:N',N'',O]dicopper(II) dihydrate

Crystal data	
$[Cu_2(C_9H_{10}N_4O_3)_2(H_2O)_2]$ ·2H ₂ O	$F_{000} = 1980$
$M_r = 643.56$	$D_{\rm x} = 1.669 {\rm Mg m}^{-3}$
Monoclinic, C2	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: C 2y	Cell parameters from 2360 reflections
a = 14.598 (9) Å	$\theta = 2.7 - 24.8^{\circ}$
b = 8.627 (5) Å	$\mu = 1.73 \text{ mm}^{-1}$
c = 30.508 (19) Å	T = 291 (2) K
$\beta = 90.322 \ (3)^{\circ}$	Block, purple
$V = 3842 (4) \text{ Å}^3$	$0.30 \times 0.26 \times 0.24 \text{ mm}$
Z = 6	

Data collection

Bruker SMART APEX CCD diffractometer	6743 independent reflections
Radiation source: sealed tube	5342 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.030$
T = 291(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000)	$h = -18 \rightarrow 15$
$T_{\min} = 0.61, \ T_{\max} = 0.67$	$k = -7 \rightarrow 10$
10436 measured reflections	<i>l</i> = −36→37

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.055$	$w = 1/[\sigma^2(F_o^2) + (0.0545P)^2 + 1.22P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.109$	$(\Delta/\sigma)_{max} < 0.001$
S = 1.07	$\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$

6743 reflections	$\Delta \rho_{\rm min} = -0.77 \ {\rm e} \ {\rm \AA}^{-3}$
568 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 2717 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.020 (15)
Secondary atom site location: difference Fourier map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.5715 (4)	0.2703 (7)	0.40534 (19)	0.0465 (15)
C2	0.6209 (4)	0.3479 (8)	0.4437 (2)	0.0526 (16)
H2A	0.6138	0.2817	0.4696	0.063*
C3	0.7769 (5)	0.3748 (9)	0.4668 (2)	0.0620 (19)
C4	0.8756 (4)	0.4282 (9)	0.4619 (2)	0.0590 (18)
H4A	0.8796	0.5377	0.4688	0.071*
H4C	0.9140	0.3722	0.4825	0.071*
C5	0.9097 (5)	0.4023 (9)	0.4170 (2)	0.0614 (19)
H5A	0.9665	0.3544	0.4144	0.074*
C6	0.5815 (4)	0.5047 (7)	0.45415 (15)	0.0374 (13)
H6A	0.5162	0.4940	0.4591	0.045*
H6B	0.6091	0.5426	0.4811	0.045*
C7	0.5963 (4)	0.6198 (7)	0.41921 (17)	0.0403 (13)
C8	0.5681 (4)	0.6289 (6)	0.37706 (16)	0.0357 (12)
H8A	0.5298	0.5569	0.3636	0.043*
C9	0.6537 (4)	0.8302 (8)	0.38718 (17)	0.0483 (14)
H9A	0.6853	0.9227	0.3830	0.058*
C10	0.4564 (4)	0.6099 (8)	0.26138 (19)	0.0459 (14)
C11	0.5162 (4)	0.6449 (7)	0.22274 (18)	0.0429 (14)
H11A	0.4775	0.6679	0.1972	0.051*
C12	0.6075 (4)	0.8534 (8)	0.19779 (19)	0.0484 (15)
C13	0.6801 (4)	0.9761 (8)	0.20578 (18)	0.0460 (14)
H13A	0.7394	0.9311	0.1993	0.055*
H13C	0.6700	1.0599	0.1851	0.055*
C14	0.6843 (4)	1.0421 (9)	0.24954 (19)	0.0532 (17)
H14A	0.6828	1.1495	0.2520	0.064*
C15	0.5762 (4)	0.5020 (7)	0.21278 (17)	0.0412 (13)

H15A	0.5367	0.4125	0.2092	0.049*
H15B	0.6073	0.5189	0.1852	0.049*
C16	0.6435 (4)	0.4680 (7)	0.24593 (17)	0.0379 (12)
C17	0.6350 (4)	0.4175 (6)	0.28876 (18)	0.0364 (12)
H17A	0.5795	0.3958	0.3023	0.044*
C18	0.7772 (4)	0.4421 (8)	0.27869 (18)	0.0461 (15)
H18A	0.8403	0.4390	0.2831	0.055*
C19	0.8858 (3)	0.8743 (7)	0.06998 (18)	0.0393 (13)
C20	0.8977 (4)	0.7637 (7)	0.1103 (2)	0.0421 (14)
H20A	0.8676	0.8099	0.1358	0.051*
C21	0.8262 (4)	0.5350 (8)	0.13383 (19)	0.0507 (16)
C22	0.7617 (5)	0.4025 (9)	0.1221 (2)	0.065 (2)
H22A	0.7556	0.3365	0.1476	0.078*
H22B	0.7018	0.4461	0.1158	0.078*
C23	0.7884 (4)	0.3043 (8)	0.08456 (19)	0.0517 (14)
H23A	0.7858	0.1970	0.0871	0.062*
C24	0.9974 (4)	0.7407 (7)	0.12051 (19)	0.0417 (13)
H24A	1.0030	0.6802	0.1472	0.050*
H24B	1.0252	0.8411	0.1260	0.050*
C25	1.0500 (4)	0.6603 (7)	0.0845 (2)	0.0428 (13)
C26	1.0739 (4)	0.6996 (8)	0.0440 (2)	0.0532 (16)
H26A	1.0608	0.7951	0.0313	0.064*
C27	1.1294 (5)	0.4756 (8)	0.0539 (2)	0.0515 (16)
H27A	1.1604	0.3828	0.0495	0.062*
Cu1	0.73812 (5)	0.34830 (9)	0.37106 (3)	0.0537 (2)
Cu2	0.58071 (5)	0.81489 (9)	0.29434 (2)	0.0490 (2)
Cu3	0.84047 (5)	0.58662 (8)	0.03755 (2)	0.04530 (19)
N1	0.7178 (3)	0.3560 (7)	0.43345 (17)	0.0523 (14)
N2	0.8651 (4)	0.4428 (8)	0.37829 (19)	0.0587 (16)
H2B	0.889 (5)	0.502 (10)	0.359 (3)	0.070*
N3	0.6032 (4)	0.7577 (6)	0.35642 (17)	0.0517 (13)
N4	0.6521 (4)	0.7493 (7)	0.42513 (19)	0.0541 (14)
H4B	0.681 (5)	0.774 (9)	0.449 (2)	0.065*
N5	0.5722 (4)	0.7789 (6)	0.23280 (16)	0.0516 (14)
N6	0.6904 (4)	0.9567 (7)	0.28788 (18)	0.0533 (14)
H6C	0.735 (5)	0.962 (9)	0.307 (2)	0.064*
N7	0.7169 (3)	0.4038 (6)	0.30806 (17)	0.0467 (12)
N8	0.7368 (4)	0.4864 (7)	0.24148 (18)	0.0527 (14)
H8B	0.764 (5)	0.520 (9)	0.219 (2)	0.063*
N9	0.8545 (3)	0.6177 (6)	0.10018 (16)	0.0500 (14)
N10	0.8176 (4)	0.3722 (7)	0.04501 (18)	0.0611 (16)
H10A	0.826 (5)	0.311 (10)	0.023 (3)	0.073*
N11	1.1189 (4)	0.5860 (8)	0.02374 (18)	0.0619 (15)
N12	1.0886 (4)	0.5171 (7)	0.09179 (17)	0.0522 (14)
H12E	1.087 (5)	0.465 (9)	0.116 (2)	0.063*
01	0.6181 (3)	0.2441 (5)	0.37014 (15)	0.0526 (11)
O2	0.4888 (3)	0.2400 (5)	0.40683 (14)	0.0533 (11)
O3	0.7501 (3)	0.3606 (6)	0.50674 (16)	0.0597 (13)
O4	0.4667 (3)	0.6957 (6)	0.29549 (15)	0.0547 (11)

O5	0.3989 (3)	0.5042 (5)	0.25906 (13)	0.0527 (11)
O6	0.5853 (3)	0.8218 (7)	0.15888 (15)	0.0660 (13)
07	0.8104 (3)	0.1061 (7)	0.35354 (17)	0.0590 (13)
H7B	0.860 (5)	0.126 (9)	0.339 (3)	0.071*
H7A	0.824 (5)	0.050 (10)	0.375 (3)	0.071*
08	0.4985 (3)	1.0486 (5)	0.31269 (14)	0.0478 (10)
H8C	0.493 (4)	1.112 (9)	0.287 (2)	0.057*
H8D	0.531 (4)	1.104 (8)	0.335 (2)	0.057*
09	0.8477 (2)	0.8128 (5)	0.03590 (13)	0.0486 (10)
O10	0.9102 (3)	1.0069 (5)	0.07319 (15)	0.0545 (11)
O11	0.8329 (3)	0.5820 (7)	0.17319 (12)	0.0581 (12)
O12	0.6810 (3)	0.6007 (6)	0.01956 (18)	0.0618 (13)
H12C	0.670 (5)	0.569 (10)	-0.006 (3)	0.074*
H12B	0.653 (6)	0.550 (10)	0.039 (3)	0.074*
O13	0.5775 (4)	0.6092 (6)	0.09253 (17)	0.0668 (15)
H13B	0.522 (6)	0.616 (11)	0.086 (3)	0.080*
H13D	0.592 (6)	0.687 (11)	0.108 (3)	0.080*
O14	0.4370 (4)	0.2051 (7)	0.24037 (17)	0.0623 (14)
H14B	0.409 (5)	0.286 (10)	0.249 (3)	0.075*
H14D	0.401 (5)	0.149 (10)	0.226 (3)	0.075*
O15	0.8596 (3)	0.9559 (6)	0.42679 (14)	0.0502 (11)
H15C	0.885 (5)	0.871 (9)	0.419 (2)	0.060*
H15E	0.813 (5)	0.936 (9)	0.442 (2)	0.060*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.043 (3)	0.061 (4)	0.036 (3)	0.016 (3)	-0.002 (2)	0.007 (3)
C2	0.038 (3)	0.060 (4)	0.059 (4)	0.018 (3)	-0.003 (3)	0.000 (3)
C3	0.057 (4)	0.081 (5)	0.048 (4)	0.023 (4)	0.011 (3)	0.016 (3)
C4	0.045 (4)	0.076 (5)	0.056 (4)	0.017 (3)	0.004 (3)	0.013 (3)
C5	0.067 (4)	0.068 (5)	0.049 (4)	-0.031 (4)	-0.005 (3)	0.008 (3)
C6	0.036 (3)	0.058 (4)	0.019 (2)	0.021 (2)	0.0077 (19)	0.000(2)
C7	0.044 (3)	0.046 (4)	0.030 (3)	-0.008 (2)	0.005 (2)	-0.002 (2)
C8	0.038 (3)	0.036 (3)	0.033 (3)	-0.003 (2)	-0.001 (2)	0.002 (2)
C9	0.056 (3)	0.060 (4)	0.029 (3)	-0.012 (3)	0.000 (2)	0.001 (3)
C10	0.042 (3)	0.051 (4)	0.044 (3)	0.010 (3)	-0.009 (2)	0.015 (3)
C11	0.046 (3)	0.058 (4)	0.024 (3)	-0.006 (3)	-0.008 (2)	0.019 (2)
C12	0.045 (3)	0.061 (4)	0.039 (3)	-0.011 (3)	-0.009 (2)	0.005 (3)
C13	0.039 (3)	0.063 (4)	0.036 (3)	-0.006 (3)	0.011 (2)	0.010 (3)
C14	0.057 (4)	0.068 (5)	0.035 (3)	-0.016 (3)	0.004 (3)	-0.006 (3)
C15	0.045 (3)	0.047 (4)	0.032 (3)	-0.004 (3)	-0.007 (2)	0.018 (2)
C16	0.039 (3)	0.044 (3)	0.031 (3)	0.006 (2)	-0.001 (2)	0.006 (2)
C17	0.030 (3)	0.042 (3)	0.037 (3)	0.007 (2)	0.006 (2)	0.004 (2)
C18	0.035 (3)	0.072 (5)	0.031 (3)	-0.010 (3)	-0.003 (2)	-0.015 (3)
C19	0.034 (3)	0.042 (3)	0.041 (3)	0.010 (2)	0.007 (2)	-0.011 (2)
C20	0.045 (3)	0.038 (3)	0.044 (3)	0.004 (2)	0.003 (2)	-0.017 (2)
C21	0.040 (3)	0.070 (5)	0.043 (3)	-0.015 (3)	0.014 (3)	-0.014 (3)

C22	0.076 (5)	0.088 (6)	0.032 (3)	-0.052 (4)	0.026 (3)	-0.017 (3)
C23	0.057 (3)	0.055 (4)	0.044 (3)	-0.009 (3)	0.001 (2)	-0.001 (3)
C24	0.034 (3)	0.046 (3)	0.045 (3)	0.003 (2)	0.001 (2)	-0.010 (3)
C25	0.033 (3)	0.040 (3)	0.055 (4)	0.001 (2)	0.010 (2)	0.001 (3)
C26	0.052 (4)	0.062 (4)	0.046 (3)	0.023 (3)	0.021 (3)	0.010 (3)
C27	0.060 (4)	0.040 (3)	0.055 (4)	0.003 (3)	0.023 (3)	0.008 (3)
Cu1	0.0456 (4)	0.0658 (6)	0.0497 (4)	0.0228 (4)	0.0038 (3)	0.0082 (4)
Cu2	0.0527 (4)	0.0620 (5)	0.0323 (3)	0.0025 (4)	-0.0052 (3)	0.0086 (3)
Cu3	0.0475 (4)	0.0476 (4)	0.0409 (4)	-0.0152 (3)	0.0141 (3)	-0.0183 (3)
N1	0.026 (2)	0.071 (4)	0.061 (3)	0.022 (2)	0.009 (2)	0.016 (3)
N2	0.064 (4)	0.068 (4)	0.044 (3)	-0.007 (3)	0.003 (3)	0.024 (3)
N3	0.062 (3)	0.054 (3)	0.039 (3)	-0.008 (2)	0.003 (2)	0.009(2)
N4	0.052 (3)	0.066 (4)	0.045 (3)	-0.009(3)	0.001 (2)	0.001 (3)
N5	0.071 (3)	0.050 (4)	0.034 (3)	-0.002 (3)	-0.009 (2)	0.007 (2)
N6	0.066 (4)	0.053 (3)	0.041 (3)	-0.005 (3)	-0.026 (2)	0.010(2)
N7	0.032 (2)	0.064 (4)	0.044 (3)	0.003 (2)	0.003 (2)	-0.008 (2)
N8	0.044 (3)	0.070 (4)	0.044 (3)	-0.010 (3)	0.009 (2)	0.015 (3)
N9	0.053 (3)	0.051 (3)	0.046 (3)	-0.029 (2)	0.020 (2)	-0.020 (2)
N10	0.078 (4)	0.064 (4)	0.042 (3)	-0.025 (3)	0.017 (3)	-0.007 (3)
N11	0.055 (3)	0.072 (4)	0.058 (3)	0.027 (3)	0.016 (2)	0.023 (3)
N12	0.064 (4)	0.055 (3)	0.037 (3)	0.021 (3)	0.010 (2)	0.023 (2)
01	0.055 (3)	0.058 (3)	0.045 (2)	0.012 (2)	0.0050 (19)	0.006 (2)
O2	0.053 (3)	0.066 (3)	0.041 (2)	-0.010 (2)	0.0113 (18)	-0.014 (2)
O3	0.049 (2)	0.066 (3)	0.064 (3)	0.033 (2)	0.007 (2)	0.002 (2)
O4	0.053 (2)	0.056 (3)	0.055 (3)	0.017 (2)	0.006 (2)	0.000(2)
05	0.068 (3)	0.053 (3)	0.037 (2)	-0.016 (2)	0.017 (2)	-0.0008 (19)
06	0.083 (3)	0.058 (3)	0.057 (3)	-0.027 (3)	-0.018 (2)	0.010 (3)
07	0.047 (2)	0.075 (4)	0.056 (3)	0.028 (2)	0.008 (2)	-0.001 (3)
08	0.053 (2)	0.055 (3)	0.034 (2)	-0.010 (2)	-0.0091 (18)	0.0044 (19)
09	0.042 (2)	0.053 (3)	0.051 (2)	0.001 (2)	0.0033 (17)	-0.018 (2)
O10	0.060(3)	0.041 (3)	0.062 (3)	0.009 (2)	-0.031 (2)	-0.009 (2)
011	0.073 (3)	0.076 (3)	0.026 (2)	-0.031 (3)	0.0172 (18)	-0.016 (2)
012	0.064 (3)	0.064 (3)	0.058 (3)	-0.036 (3)	-0.004 (2)	-0.022 (3)
013	0.081 (3)	0.056 (3)	0.064 (3)	-0.035 (3)	0.028 (3)	-0.029 (3)
014	0.067 (3)	0.068 (4)	0.052 (3)	-0.027 (3)	-0.031 (2)	0.022 (3)
015	0.042 (2)	0.070 (3)	0.038 (2)	-0.008 (2)	0.0117 (18)	0.002 (2)

Geometric parameters (Å, °)

C1—O1 1.294 (7) C21—O11 1.271 (7))
C1—C2 1.526 (9) C21—N9 1.319 (8)
C2—N1 1.452 (7) C21—C22 1.522 (9)
C2—C6 1.505 (8) C22—C23 1.478 (9)
C2—H2A 0.9800 C22—H22A 0.9700	
C3—O3 1.289 (8) C22—H22B 0.9700	
C3—N1 1.339 (9) C23—N10 1.410 (8)
C3—C4 1.519 (10) C23—H23A 0.9300	
C4—C5 1.476 (10) C24—C25 1.511 (8)

C4—H4A	0.9700	C24—H24A	0.9700
C4—H4C	0.9700	C24—H24B	0.9700
C5—N2	1.390 (9)	C25—C26	1.331 (8)
C5—H5A	0.9300	C25—N12	1.375 (8)
C6—C7	1.474 (8)	C26—N11	1.334 (8)
С6—Н6А	0.9700	C26—H26A	0.9300
С6—Н6В	0.9700	C27—N11	1.333 (8)
С7—С8	1.350 (7)	C27—N12	1.352 (8)
C7—N4	1.393 (8)	C27—H27A	0.9300
C8—N3	1.377 (7)	Cu1—N1	1.929 (5)
C8—H8A	0.9300	Cu1—O1	1.970 (5)
C9—N3	1.345 (8)	Cu1—N7	2.003 (5)
C9—N4	1.352 (8)	Cu1—N2	2.036 (6)
С9—Н9А	0.9300	Cu1—O7	2.402 (5)
C10—O5	1.242 (7)	Cu2—N5	1.906 (5)
C10—O4	1.285 (8)	Cu2—O4	1.956 (5)
C10—C11	1.501 (8)	Cu2—N3	1.983 (5)
C11—N5	1.448 (8)	Cu2—N6	2.026 (6)
C11—C15	1.544 (9)	Cu2—O8	2.414 (5)
C11—H11A	0.9800	Cu3—N10	1.893 (6)
C12—O6	1.258 (7)	Cu3—N9	1.939 (5)
C12—N5	1.351 (8)	Cu3—O9	1.955 (5)
C12—C13	1.517 (8)	Cu3—N11 ⁱ	1.965 (5)
C13—C14	1.452 (8)	Cu3—O12	2.392 (5)
С13—Н13А	0.9700	N2—H2B	0.85 (8)
C13—H13C	0.9700	N4—H4B	0.86 (7)
C14—N6	1.385 (8)	N6—H6C	0.87 (7)
C14—H14A	0.9300	N8—H8B	0.85 (7)
C15—C16	1.436 (7)	N10—H10A	0.87 (8)
C15—H15A	0.9700	N11—Cu3 ⁱ	1.965 (5)
C15—H15B	0 9700	N12—H12E	0.86(7)
C16—N8	1 379 (7)	07—H7B	0.86 (8)
C16—C17	1 383 (7)	07—H7A	0.83 (8)
C17—N7	1 335 (7)	O8—H8C	0.02(0)
С17—Н17А	0.9300	O8—H8D	0.95 (7)
C18—N7	1.303 (8)	012—H12C	0.85 (8)
C18—N8	1.332 (8)	O12—H12B	0.85 (8)
C18—H18A	0.9300	O13—H13B	0.84 (8)
C19—O10	1.202 (7)	O13—H13D	0.85 (9)
C19—O9	1.290 (7)	O14—H14B	0.85 (8)
C19—C20	1.565 (9)	014—H14D	0.84 (8)
C20—N9	1.441 (7)	O15—H15C	0.86 (7)
C20—C24	1.500 (8)	O15—H15E	0.85 (8)
$0^{2}-0^{1}-0^{1}$	120.7 (6)	С25—С24—Н24А	108.8
02 - C1 - C2	120.7 (0)	$C_{20} = C_{24} = H_{24}$	108.8
01 - C1 - C2	1177(5)	C25-C24-H24B	108.8
N1-C2-C6	112.1.(6)	H24A - C24 - H24B	107.7
N1_C2_C1	108 2 (5)	1277 - 27 - 1127D C26-C25-N12	107.7
$111 \ 02 - 01$	100.2 (5)	020 -023-1112	105.0 (5)

C6—C2—C1	112.1 (5)	C26—C25—C24	134.0 (6)
N1—C2—H2A	108.1	N12—C25—C24	120.3 (5)
С6—С2—Н2А	108.1	C25—C26—N11	112.1 (6)
C1—C2—H2A	108.1	С25—С26—Н26А	124.0
O3—C3—N1	120.5 (6)	N11—C26—H26A	124.0
O3—C3—C4	114.5 (6)	N11—C27—N12	110.6 (6)
N1—C3—C4	124.7 (6)	N11—C27—H27A	124.7
C5—C4—C3	111.7 (6)	N12—C27—H27A	124.7
С5—С4—Н4А	109.3	N1—Cu1—O1	83.6 (2)
С3—С4—Н4А	109.3	N1—Cu1—N7	156.1 (2)
С5—С4—Н4С	109.3	O1—Cu1—N7	87.86 (19)
C3—C4—H4C	109.3	N1—Cu1—N2	91.4 (2)
H4A—C4—H4C	107.9	O1—Cu1—N2	173.6 (2)
N2—C5—C4	126.2 (7)	N7—Cu1—N2	98.3 (2)
N2—C5—H5A	116.9	N1—Cu1—O7	108.6 (2)
С4—С5—Н5А	116.9	O1—Cu1—O7	89.52 (19)
C7—C6—C2	113.3 (4)	N7—Cu1—O7	93.47 (19)
С7—С6—Н6А	108.9	N2—Cu1—O7	88.4 (2)
С2—С6—Н6А	108.9	N5—Cu2—O4	83.2 (2)
С7—С6—Н6В	108.9	N5—Cu2—N3	155.5 (2)
С2—С6—Н6В	108.9	O4—Cu2—N3	89.3 (2)
Н6А—С6—Н6В	107.7	N5—Cu2—N6	92.8 (2)
C8—C7—N4	104.6 (5)	O4—Cu2—N6	172.8 (2)
C8—C7—C6	133.1 (5)	N3—Cu2—N6	96.7 (2)
N4—C7—C6	122.3 (5)	N5—Cu2—O8	109.57 (19)
C7—C8—N3	111.7 (5)	O4—Cu2—O8	90.63 (18)
С7—С8—Н8А	124.1	N3—Cu2—O8	93.8 (2)
N3—C8—H8A	124.1	N6—Cu2—O8	85.0 (2)
N3—C9—N4	110.1 (6)	N10—Cu3—N9	92.0 (2)
N3—C9—H9A	124.9	N10—Cu3—O9	171.0 (2)
N4—C9—H9A	124.9	N9—Cu3—O9	83.2 (2)
O5—C10—O4	123.0 (6)	N10—Cu3—N11 ⁱ	99.6 (3)
Q5—C10—C11	1199(6)	$N0 Cu^3 N11^{i}$	155 1 (2)
O_{4} C_{10} C_{11}	117.0 (6)		87.8 (2)
N5 C11 C10	102.0 (5)	09—Cu3—N11	87.8 (2)
N5-C11-C10	108.9 (5)	N10-Cu3-012	84.0 (2)
	111.0(3)	$N_9 = Cu_3 = O12$	108.4(2)
	109.1 (4)	09—Cu5—012	89.78 (17)
N5—CII—HIIA	109.3	N11 ¹ —Cu3—O12	94.6 (2)
CIO-CII-HIIA	109.3	$C_3 = N_1 = C_2$	117.8 (5)
CIS-CII-HIIA	109.3	C3—NI—Cul	130.6 (4)
06—C12—N5	123.1 (6)	C2—NI—Cul	111.5 (4)
06	118.6 (5)	C5—N2—Cul	114.4 (4)
N5—C12—C13	118.3 (5)	C5—N2—H2B	123 (5)
C14—C13—C12	116.6 (5)	Cu1—N2—H2B	123 (5)
C14—C13—H13A	108.2	C9 - N3 - C8	105.1 (5)
C12—C13—H13A	108.2	C9—N3—Cu2	129.6 (4)
C14—C13—H13C	108.2	C8—N3—Cu2	125.3 (4)
C12—C13—H13C	108.2	C9—N4—C7	108.5 (5)

N6-Cl4-Cl3 124.7 (6) C7-N4-H4B 126 (5) N6-Cl4-H14A 117.6 Cl2-N5-Cl1 115.4 (5) Cl3-Cl4-H14A 117.6 Cl2-N5-Cu2 132.7 (4) Cl6-Cl5-Cl1 114.3 (5) Cl1-N5-Cu2 118.4 (4) Cl6-Cl5-H15A 108.7 Cl4-N6-Cu2 110.9 (4) Cl1-Cl5-H15B 108.7 Cu2-N6-H6C 124 (5) Cl1-Cl5-H15B 108.7 Cu2-N6-H6C 124 (5) Cl6-Cl5 125.4 (5) Cl8-N7-Cu1 125.2 (4) N8-Cl6-Cl7 102.9 (5) Cl7-N-Cu1 123.3 (4) N8-Cl6-Cl5 131.7 (5) Cl8-N8-H8B 126 (5) N7-Cl7-H17A 124.5 Cl-N9-Cu3 113.1 (4) N7-Cl6 111.1 (5) Cl6-N8-H8B 125 (5) N7-Cl7-H17A 124.5 Cl-N9-Cu3 123.3 (4) N7-Cl8-N8 111.1 (5) Cl6-N8-H8B 123.4 (5) Cl6-Cl7-H17A 124.5 Cl-N9-Cu3 123.3 (5) N7-Cl8-M18A 124.4 C23-N10-Cu3 123.3 (5) N8-Cl8-Cl6 Cu3-N10-H10A 117 (5) Cl0-Cl9-Cl9 153 (5)	H13A—C13—H13C	107.3	C9—N4—H4B	126 (5)
N6-C14-H14A 117.6 C12-NS-CU1 115.4 (5) C13-C14-H14A 117.6 C12-NS-Cu2 113.2 7 (4) C16-C15-C11 114.3 (5) C11-NS-Cu2 111.8 (4) C16-C15-H15A 108.7 C14-N6-Cu2 110.9 (4) C11-C15-H15B 108.7 C14-N6-H6C 125 (5) C16-C15-H15B 108.7 C18-N7-C17 106.4 (5) H15A-C15-H15B 107.6 C18-N7-C11 128.2 (4) N8-C16-C17 102.9 (5) C17-N7-Cu1 125.3 (4) N8-C16-C15 125.4 (5) C18-N8-H8B 126 (5) N7-C17-C16 111.1 (5) C16-N8-H8B 126 (5) N7-C17-C16 111.1 (5) C20-N9-Cu3 112.1 (4) N7-C17-H17A 124.5 C21-N9-Cu3 124.3 (5) N7-C17-H17A 124.4 C23-N10-H10A 117 (5) C16-C17-H17A 124.4 C23-N10-H10A 117 (5) O10-C19-C20 115.3 (5) C27-N11-C23 128.7 (5) N9-C20-C19 105.6 (5) C27-N11-Cu3 ¹ 128.7 (5) N9-C20-L19 108.6 (5) C27-N12-C125 106.4 (5)	N6-C14-C13	124.7 (6)	C7—N4—H4B	126 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N6—C14—H14A	117.6	C12—N5—C11	115.4 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13-C14-H14A	117.6	C12—N5—Cu2	132.7 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C15—C11	114.3 (5)	C11—N5—Cu2	111.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16-C15-H15A	108.7	C14—N6—Cu2	110.9 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11-C15-H15A	108.7	C14—N6—H6C	125 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С16—С15—Н15В	108.7	Cu2—N6—H6C	124 (5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С11—С15—Н15В	108.7	C18—N7—C17	106.4 (5)
N8—C16—C17 102.9 (5) C17—N7—Cul 125.3 (4) N8—C16—C15 125.4 (5) C18—N8—C16 108.4 (5) C17—C16—C15 131.7 (5) C18—N8—H8B 126 (5) N7—C17—C16 111.1 (5) C16—N8—H8B 125 (5) N7—C17—H17A 124.5 C21—N9—C20 116.4 (5) C16—C17—H17A 124.5 C21—N9—Cu3 121.1 (4) N7—C18—N8 111.1 (5) C20—N9—Cu3 122.1 (4) N7—C18—H18A 124.4 C23—N10—Cu3 124.3 (5) N8—C18—H18A 124.4 C23—N10—H10A 117 (5) O10—C19—O9 125.6 (6) Cu3—N10—H10A 118 (5) O10—C19—C20 119.0 (5) C27—N11—Cu3 ⁱ 1262.0 (5) O9—C19—C20 115.3 (5) C27—N11—Cu3 ⁱ 1262.0 (5) N9—C20—C19 108.6 (5) C27—N12—C25 106.4 (5) C24—C20—C19 108.6 (5) C27—N12—H12E 127 (6) N9—C20—H20A 109.1 C1—O1—Cu1 112.3 (4) C19—C20—H20A 109.1 C1—O1—Cu1 112.6 (4) O11—C21—N9 122.7 (6) Cu1—O7—H7A 106 (6) </td <td>H15A—C15—H15B</td> <td>107.6</td> <td>C18—N7—Cu1</td> <td>128.2 (4)</td>	H15A—C15—H15B	107.6	C18—N7—Cu1	128.2 (4)
N8-C16-C15 125.4 (5) C18-N8-C16 108.4 (5) C17-C16-C15 131.7 (5) C18-N8-H8B 126 (5) N7-C17-C16 111.1 (5) C16-N8-H8B 125 (5) N7-C17-H17A 124.5 C21-N9-C20 116.4 (5) C16-C17-H17A 124.5 C21-N9-Cu3 131.3 (4) N7-C18-M8 111.1 (5) C20-N9-Cu3 124.3 (5) N8-C18-H18A 124.4 C23-N10-Cu3 124.3 (5) O10-C19-09 125.6 (6) Cu3-N10-H10A 118 (5) O10-C19-020 119.0 (5) C27-N11-C26 105.1 (5) O9-C19-C20 115.3 (5) C27-N11-Cu3 ⁱ 128.7 (5) N9-C20-C24 110.6 (5) C26-N11-Cu3 ⁱ 126.2 (5) N9-C20-C19 108.6 (5) C27-N12-C25 106.4 (5) C24-C20-H20A 109.1 C10-O4-Cu2 112.6 (4) O11-C21-N9 122.7 (6) Cu1-O7-H7B 108 (5) O11-C21-C22 120.4 (5) Cu2-O8-H8C 109 (4) C23-C22-H22A 108.1 Cu2-O8-H8D 109 (4) C33-C22-H22A 108.1 Cu2-O8-H8D 109 (4)	N8—C16—C17	102.9 (5)	C17—N7—Cu1	125.3 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N8—C16—C15	125.4 (5)	C18—N8—C16	108.4 (5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C17—C16—C15	131.7 (5)	C18—N8—H8B	126 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N7—C17—C16	111.1 (5)	C16—N8—H8B	125 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N7—C17—H17A	124.5	C21—N9—C20	116.4 (5)
N7C18N8111.1 (5)C20N9Cu3112.1 (4)N7C18H18A124.4C23N10Cu3124.3 (5)N8C18H18A124.4C23N10H10A117 (5)O10C19O9125.6 (6)Cu3N10H10A118 (5)O10C19C20119.0 (5)C27N11C26105.1 (5)O9C19C20115.3 (5)C27N11Cu3 ⁱ 128.7 (5)N9C20C24110.6 (5)C26N11Cu3 ⁱ 126.2 (5)N9C20C19108.6 (5)C27N12C25106.4 (5)C24C20C19110.3 (5)C27N12H12E126 (5)C24C20-H20A109.1C15N12H12E126 (5)C24C20-H20A109.1C1O1Cu1112.3 (4)C19C20-H20A109.1C10O4Cu2112.6 (4)O11C21N9122.7 (6)Cu1O7H7A116 (6)N9C22C21116.6 (5)Cu2O8H8C109 (4)C23C22C21116.6 (5)Cu2-O8H8D109 (4)C23C22H22A108.1H2CO8H8D109 (4)C21C22H22A108.1C19O9Cu3114.4 (4)C21C22H22B108.1C19O9Cu3114.4 (4)C21C22H22B108.1C19O12H12B113 (7)N10C23C22120.5 (6)H12CO12H12B113 (7)N10C23H23A119.8H13B-O13H13D109 (9)C20C24H24A108.8H14B-O14H14D109 (8)C20C24H24A108.8H14B-O14H14D109 (8)C20C24H24A108.8H10CO15H15	С16—С17—Н17А	124.5	C21—N9—Cu3	131.3 (4)
N7C18H18A124.4C23N10Cu3124.3 (5)N8C18H18A124.4C23N10H10A117 (5)O10C19O9125.6 (6)Cu3N10H10A118 (5)O10C19C20119.0 (5)C27N11C26105.1 (5)O9C19C20115.3 (5)C27N11Cu3^i128.7 (5)N9C20C24110.6 (5)C26N11Cu3^i126.2 (5)N9C20C19108.6 (5)C27N12C25106.4 (5)C24C20C19110.3 (5)C27N12H12E127 (5)N9C20H20A109.1C1-O1Cu1112.3 (4)C19C20H20A109.1C10O4Cu2112.6 (4)O11C21N2120.4 (5)Cu107H7B108 (5)O11C21C22120.4 (5)Cu107H7A116 (6)N9C22C21116.6 (5)Cu208H8D109 (4)C23C22C21116.6 (5)Cu208H8D109 (4)C21C22H22A108.1Cu208H8D109 (4)C21C22H22B108.1Cu3012H12B112 (5)H22AC22H22B108.1Cu3012H12B113 (7)N10C23C22120.5 (6)H12CO12H12B113 (7)N10C23H23A119.8H13B-O13H13D109 (9)C20C24H22B108.1Cu3O12H12B113 (7)N10C23H23A119.8H14B-O14H14D109 (8)C20C24H23A119.8H14B-O14H14D109 (8)C20C24H24A108.8H106-O15H15E110 (7)C20C24H24A108.8H14B-O14H14D	N7	111.1 (5)	C20—N9—Cu3	112.1 (4)
N8—C18—H18A124.4C23—N10—H10A117 (5)O10—C19—O9125.6 (6)Cu3—N10—H10A118 (5)O10—C19—C20119.0 (5)C27—N11—C26105.1 (5)O9—C19—C20115.3 (5)C27—N11—Cu3 ⁱ 128.7 (5)N9—C20—C24110.6 (5)C26—N11—Cu3 ⁱ 126.2 (5)N9—C20—C19108.6 (5)C27—N12—C25106.4 (5)C24—C20—C19110.3 (5)C27—N12—H12E127 (5)N9—C20—H20A109.1C1—O1—Cu1112.3 (4)C19—C20—H20A109.1C1—O1—Cu1112.3 (4)C19—C20—H20A109.1C1—O1—Cu1112.6 (4)O11—C21—N9122.7 (6)Cu1—O7—H7B108 (5)O11—C21—C22120.4 (5)Cu1—O7—H7A116 (6)N9—C22—C21116.6 (5)Cu2—O8—H8C109 (4)C23—C22—H22A108.1Cu2—O8—H8D109 (4)C21—C22—H22B108.1Cu3—O12—H12B110 (6)C23—C22—H22B108.1Cu3—O12—H12B113 (7)N10—C23—C22120.5 (6)H12C—O12—H12B113 (7)N10—C23—H23A119.8H14B—O14—H14D109 (8)C20—C24—H23A19.8H13B—O13—H13D109 (9)C22—C23—H23A119.8H14B—O14—H14D109 (8)C20—C24—H24A108.8Symmetry codes: (i) —x+2, y, -z.Symmetry codes: (i) —x+2, y, -z.	N7	124.4	C23—N10—Cu3	124.3 (5)
010—C19—O9125.6 (6)Cu3—N10—H10A118 (5)010—C19—C20119.0 (5)C27—N11—C26105.1 (5)09—C19—C20115.3 (5)C27—N11—Cu3 ⁱ 128.7 (5)N9—C20—C24110.6 (5)C26—N11—Cu3 ⁱ 126.2 (5)N9—C20—C19108.6 (5)C27—N12—C25106.4 (5)C24—C20—C19110.3 (5)C27—N12—H12E127 (5)N9—C20—H20A109.1C1—O1—Cu1112.3 (4)C19—C20—H20A109.1C1—O1—Cu1112.3 (4)C19—C20—H20A109.1C10—O4—Cu2112.6 (4)O11—C21—N9122.7 (6)Cu1—O7—H7B108 (5)O11—C21—C22120.4 (5)Cu1—O7—H7A116 (6)N9—C20—C24114.8 (5)H7B—O7—H7A108 (7)C23—C22—C21116.6 (5)Cu2—O8—H8D109 (4)C21—C22 <h22a< td="">108.1Cu2—O8—H8D109 (4)C21—C22—H22A108.1Cu3—O12—H12B114.4 (4)C21—C22—H22B108.1Cu3—O12—H12B107 (5)N10—C23—H22B108.1Cu3—O12—H12B113 (7)N10—C23—H23A119.8H13B—O13—H13D109 (9)C20—C24—H23A119.8H13B—O14—H14D109 (8)C20—C24—H24A108.8110 (7)C20—C24—H24A108.8110 (7)C20—C24—H24A108.8110 (7)</h22a<>	N8—C18—H18A	124.4	C23—N10—H10A	117 (5)
010—C19—C20119.0 (5)C27—N11—C26105.1 (5)09—C19—C20115.3 (5)C27—N11—Cu3 ⁱ 128.7 (5)N9—C20—C24110.6 (5)C26—N11—Cu3 ⁱ 126.2 (5)N9—C20—C19108.6 (5)C27—N12—C25106.4 (5)C24—C20—C19110.3 (5)C27—N12—H12E127 (5)N9—C20—H20A109.1C1—O1—Cu1112.3 (4)C19—C20—H20A109.1C1—O1—Cu1112.3 (4)C19—C20—H20A109.1C10—O4—Cu2112.6 (4)O11—C21—N9122.7 (6)Cu1—O7—H7B108 (5)O11—C21—C22120.4 (5)Cu1—O7—H7A116 (6)N9—C20—C22—C21116.6 (5)Cu2—O8—H8C109 (4)C23—C22—H22A108.1Cu2—O8—H8D109 (4)C21—C22—H22B108.1Cu3—O12—H12B110 (6)C23—C22—H22B108.1Cu3—O12—H12B113 (7)N10—C23—H22B107.3Cu3—O12—H12B113 (7)N10—C23—H23A119.8H13B—O13—H13D109 (9)C22—C24—H23A119.8H14B—O14—H14D109 (8)C20—C24—H24A108.8110 (7)C20—C24—H24A108.8110 (7)	O10-C19-O9	125.6 (6)	Cu3—N10—H10A	118 (5)
09C19C20115.3 (5) $C27N11Cu3^i$ 128.7 (5)N9C20C24110.6 (5) $C26N11Cu3^i$ 126.2 (5)N9C20C19108.6 (5) $C27N12C25$ 106.4 (5)C24C20C19110.3 (5) $C27N12H12E$ 127 (5)N9C20H20A109.1 $C25N12H12E$ 126 (5)C24C20H20A109.1 $C1O1Cu1$ 112.3 (4)C19C20H20A109.1 $C1004Cu2$ 112.6 (4)011C21N9122.7 (6) $Cu1-07H7B$ 108 (5)011C21C22120.4 (5) $Cu1-07H7A$ 116 (6)N9C20C22C21116.6 (5) $Cu208H8D$ 109 (4)C23C22H22A108.1 $Cu208H8D$ 109 (4)C23C22H22B108.1 $Cu3-012H12B$ 110 (6)C23C22H22B108.1 $Cu3-012H12B$ 113 (7)N10C23H22A108.1 $Cu3-012H12B$ 113 (7)N10C23H23A119.8H13B-013H13D109 (9)C22C23H23A119.8H13B013H13D109 (9)C22C23H23A119.8H14B014H14D109 (8)C20C24C25113.9 (5)H15C015H15E110 (7)C20C24H24A108.8Symmetry codes: (i) -x+2, y, -z.H28	O10-C19-C20	119.0 (5)	C27—N11—C26	105.1 (5)
N9-C20-C24110.6 (5) $C26-N11-Cu3^{i}$ 126.2 (5)N9-C20-C19108.6 (5)C27-N12-C25106.4 (5)C24-C20-C19110.3 (5)C27-N12-H12E127 (5)N9-C20-H20A109.1C25-N12-H12E126 (5)C24-C20-H20A109.1C10-O4-Cu2112.3 (4)C19-C20-H20A109.1C10-O4-Cu2112.6 (4)O11-C21-N9122.7 (6)Cu1-O7-H7B108 (5)O11-C21-C22120.4 (5)Cu1-O7-H7A116 (6)N9-C21-C22114.8 (5)H7B-O7-H7A108 (7)C23-C22-C21116.6 (5)Cu2-O8-H8C109 (4)C21-C22-H22A108.1Cu2-O8-H8D109 (4)C21-C22-H22B108.1C19-O9-Cu3114.4 (4)C21-C22-H22B108.1Cu3-O12-H12B113 (7)N10-C23-C22120.5 (6)H12C-O12-H12B113 (7)N10-C23-H23A119.8H13B-O13-H13D109 (9)C22-C23-H23A19.8H14B-O14-H14D109 (8)C20-C24-C25113.9 (5)H15C-O15-H15E110 (7)C20-C24-H24A108.8Symmetry codes: (i) -x+2, y, -z.Symmetry codes: (i) -x+2, y, -z.	O9—C19—C20	115.3 (5)	C27—N11—Cu3 ⁱ	128.7 (5)
N9—C20—C19108.6 (5)C27—N12—C25106.4 (5)C24—C20—C19110.3 (5)C27—N12—H12E127 (5)N9—C20—H20A109.1C1 \rightarrow L2H12E126 (5)C24—C20—H20A109.1C1 \rightarrow O1—Cu1112.3 (4)C19—C20—H20A109.1C10 \rightarrow O4—Cu2112.6 (4)O11—C21—N9122.7 (6)Cu1 \rightarrow O7—H7B108 (5)O11—C21—C22120.4 (5)Cu1 \rightarrow O7—H7A116 (6)N9—C21—C22114.8 (5)H7B \rightarrow O7—H7A108 (7)C23—C22—C21116.6 (5)Cu2 \rightarrow O8—H8D109 (4)C21—C22—H22A108.1Cu2 \rightarrow O8—H8D109 (4)C21—C22—H22B108.1C19 \rightarrow O9 \rightarrow Cu3114.4 (4)C21—C22—H22B108.1Cu3 \rightarrow O12—H12B107 (5)N10—C23—C22120.5 (6)H12C \rightarrow O12—H12B113 (7)N10—C23—H23A119.8H13B \rightarrow O13—H13D109 (9)C22—C23—H23A119.8H14B \rightarrow O14—H14D109 (8)C20—C24—C25113.9 (5)H15C \rightarrow O15—H15E110 (7)C20—C24—H24A108.8Symmetry codes: (i) \rightarrow +2, y, \rightarrow .Symmetry codes: (i) \rightarrow +2, y, \rightarrow .	N9—C20—C24	110.6 (5)	C26—N11—Cu3 ⁱ	126.2 (5)
C24—C20—C19110.3 (5)C27—N12—H12E127 (5)N9—C20—H20A109.1C25—N12—H12E126 (5)C24—C20—H20A109.1C1—O1—Cu1112.3 (4)C19—C20—H20A109.1C10—O4—Cu2112.6 (4)O11—C21—N9122.7 (6)Cu1—O7—H7B108 (5)O11—C21—C22120.4 (5)Cu1—O7—H7A116 (6)N9—C21—C22114.8 (5)H7B—O7—H7A108 (7)C23—C22—C21116.6 (5)Cu2—O8—H8C109 (4)C23—C22—H22A108.1Cu2—O8—H8D109 (4)C21—C22—H22A108.1C19—O9—Cu3114.4 (4)C21—C22—H22B108.1Cu3—O12—H12C112 (5)H22A—C22—H22B107.3Cu3—O12—H12B107 (5)N10—C23—C22120.5 (6)H12C—O12—H12B113 (7)N10—C23—H23A119.8H13B—O13—H13D109 (9)C22—C23—H23A119.8H14B—O14—H14D109 (8)C20—C24—C25113.9 (5)H15C—O15—H15E110 (7)C20—C24—H24A108.8Symmetry codes: (i) -x+2, y, -z.H14	N9—C20—C19	108.6 (5)	C27—N12—C25	106.4 (5)
N9—C20—H20A109.1C25—N12—H12E126 (5)C24—C20—H20A109.1C1—O1—Cu1112.3 (4)C19—C20—H20A109.1C10—O4—Cu2112.6 (4)O11—C21—N9122.7 (6)Cu1—O7—H7B108 (5)O11—C21—C22120.4 (5)Cu1—O7—H7A116 (6)N9—C21—C22114.8 (5)H7B—O7—H7A108 (7)C23—C22—C21116.6 (5)Cu2—O8—H8C109 (4)C23—C22—H22A108.1Cu2—O8—H8D109 (4)C21—C22—H22A108.1C19—O9—Cu3114.4 (4)C21—C22—H22B108.1Cu3—O12—H12C112 (5)H22A—C22—H22B107.3Cu3—O12—H12B107 (5)N10—C23—C22120.5 (6)H12C—O12—H12B113 (7)N10—C23—H23A119.8H13B—O13—H13D109 (9)C22—C23—H23A119.8H14B—O14—H14D109 (8)C20—C24—C25113.9 (5)H15C—O15—H15E110 (7)C20—C24—H24A108.8SSymmetry codes: (i) –x+2, y, –z.	C24—C20—C19	110.3 (5)	C27—N12—H12E	127 (5)
C24—C20—H20A109.1C1—O1—Cu1112.3 (4)C19—C20—H20A109.1C10—O4—Cu2112.6 (4)O11—C21—N9122.7 (6)Cu1—O7—H7B108 (5)O11—C21—C22120.4 (5)Cu1—O7—H7A116 (6)N9—C21—C22114.8 (5)H7B—O7—H7A108 (7)C23—C22—C21116.6 (5)Cu2—O8—H8C109 (4)C23—C22—H22A108.1Cu2—O8—H8D109 (4)C21—C22—H22A108.1C19—O9—Cu3114.4 (4)C21—C22—H22B108.1Cu3—O12—H12C112 (5)H22A—C22—H22B107.3Cu3—O12—H12B107 (5)N10—C23—C22120.5 (6)H12C—O12—H12B113 (7)N10—C23—H23A119.8H14B—O14—H14D109 (8)C20—C24—C25113.9 (5)H15C—O15—H15E110 (7)C20—C24—H24A108.8Symmetry codes: (i) –x+2, y, -z.H	N9—C20—H20A	109.1	C25—N12—H12E	126 (5)
C19—C20—H20A109.1C10—O4—Cu2112.6 (4)O11—C21—N9122.7 (6)Cu1—O7—H7B108 (5)O11—C21—C22120.4 (5)Cu1—O7—H7A116 (6)N9—C21—C22114.8 (5)H7B—O7—H7A108 (7)C23—C22—C21116.6 (5)Cu2—O8—H8C109 (4)C21—C22—H22A108.1Cu2—O8—H8D109 (4)C21—C22—H22B108.1C19—O9—Cu3114.4 (4)C21—C22—H22B108.1Cu3—O12—H12C112 (5)H22A—C22—H22B107.3Cu3—O12—H12B107 (5)N10—C23—H23A119.8H13B—O13—H13D109 (9)C22—C23—H23A119.8H14B—O14—H14D109 (8)C20—C24—C25113.9 (5)H15C—O15—H15E110 (7)C20—C24—H24A108.8Symmetry codes: (i) –x+2, y, –z.H	C24—C20—H20A	109.1	C1—O1—Cu1	112.3 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С19—С20—Н20А	109.1	C10—O4—Cu2	112.6 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O11—C21—N9	122.7 (6)	Cu1—O7—H7B	108 (5)
N9—C21—C22114.8 (5)H7B—O7—H7A108 (7)C23—C22—C21116.6 (5)Cu2—O8—H8C109 (4)C23—C22—H22A108.1Cu2—O8—H8D109 (4)C21—C22—H22A108.1R8C—O8—H8D110 (6)C23—C22—H22B108.1Cu3—O12—H12C112 (5)H22A—C22—H22B107.3Cu3—O12—H12B107 (5)N10—C23—C22120.5 (6)H12C—O12—H12B113 (7)N10—C23—H23A119.8H14B—O14—H14D109 (8)C20—C24—C25113.9 (5)H15C—O15—H15E110 (7)C20—C24—H24A108.8Symmetry codes: (i) –x+2, y, –z.L	O11—C21—C22	120.4 (5)	Cu1—O7—H7A	116 (6)
C23—C22—C21116.6 (5)Cu2—O8—H8C109 (4)C23—C22—H22A108.1Cu2—O8—H8D109 (4)C21—C22—H22A108.1H8C—O8—H8D110 (6)C23—C22—H22B108.1C19—O9—Cu3114.4 (4)C21—C22—H22B108.1Cu3—O12—H12C112 (5)H22A—C22—H22B107.3Cu3—O12—H12B107 (5)N10—C23—C22120.5 (6)H12C—O12—H12B113 (7)N10—C23—H23A119.8H13B—O13—H13D109 (9)C22—C23—H23A119.8H14B—O14—H14D109 (8)C20—C24—C25113.9 (5)H15C—O15—H15E110 (7)C20—C24—H24A108.8Symmetry codes: (i) –x+2, y, -z.I	N9—C21—C22	114.8 (5)	H7B—O7—H7A	108 (7)
C23—C22—H22A108.1Cu2—O8—H8D109 (4)C21—C22—H22A108.1H8C—O8—H8D110 (6)C23—C22—H22B108.1C19—O9—Cu3114.4 (4)C21—C22—H22B108.1Cu3—O12—H12C112 (5)H22A—C22—H22B107.3Cu3—O12—H12B107 (5)N10—C23—C22120.5 (6)H12C—O12—H12B113 (7)N10—C23—H23A119.8H13B—O13—H13D109 (9)C22—C23—H23A119.8H14B—O14—H14D109 (8)C20—C24—C25113.9 (5)H15C—O15—H15E110 (7)C20—C24—H24A108.8Symmetry codes: (i) –x+2, y, -z.I	C23—C22—C21	116.6 (5)	Cu2—O8—H8C	109 (4)
C21—C22—H22A108.1H8C—O8—H8D110 (6)C23—C22—H22B108.1C19—O9—Cu3114.4 (4)C21—C22—H22B108.1Cu3—O12—H12C112 (5)H22A—C22—H22B107.3Cu3—O12—H12B107 (5)N10—C23—C22120.5 (6)H12C—O12—H12B113 (7)N10—C23—H23A119.8H13B—O13—H13D109 (9)C22—C23—H23A119.8H14B—O14—H14D109 (8)C20—C24—C25113.9 (5)H15C—O15—H15E110 (7)C20—C24—H24A108.8Symmetry codes: (i) –x+2, y, -z.I	C23—C22—H22A	108.1	Cu2—O8—H8D	109 (4)
C23—C22—H22B108.1C19—O9—Cu3114.4 (4)C21—C22—H22B108.1Cu3—O12—H12C112 (5)H22A—C22—H22B107.3Cu3—O12—H12B107 (5)N10—C23—C22120.5 (6)H12C—O12—H12B113 (7)N10—C23—H23A119.8H13B—O13—H13D109 (9)C22—C23—H23A119.8H14B—O14—H14D109 (8)C20—C24—C25113.9 (5)H15C—O15—H15E110 (7)C20—C24—H24A108.8Symmetry codes: (i) $-x+2, y, -z.$ Image: Constant of the second	C21—C22—H22A	108.1	H8C—O8—H8D	110 (6)
C21—C22—H22B108.1Cu3—O12—H12C112 (5)H22A—C22—H22B107.3Cu3—O12—H12B107 (5)N10—C23—C22120.5 (6)H12C—O12—H12B113 (7)N10—C23—H23A119.8H13B—O13—H13D109 (9)C22—C23—H23A119.8H14B—O14—H14D109 (8)C20—C24—C25113.9 (5)H15C—O15—H15E110 (7)C20—C24—H24A108.8Symmetry codes: (i) $-x+2, y, -z.$ Image: Cu3-cu3-cu3-cu3-cu3-cu3-cu3-cu3-cu3-cu3-c	С23—С22—Н22В	108.1	C19—O9—Cu3	114.4 (4)
H22A-C22-H22B 107.3 Cu3-O12-H12B 107 (5) N10-C23-C22 120.5 (6) H12C-O12-H12B 113 (7) N10-C23-H23A 119.8 H13B-O13-H13D 109 (9) C22-C23-H23A 119.8 H14B-O14-H14D 109 (8) C20-C24-C25 113.9 (5) H15C-O15-H15E 110 (7) C20-C24-H24A 108.8 Symmetry codes: (i) -x+2, y, -z. 109.8	C21—C22—H22B	108.1	Cu3—O12—H12C	112 (5)
N10—C23—C22 120.5 (6) H12C—O12—H12B 113 (7) N10—C23—H23A 119.8 H13B—O13—H13D 109 (9) C22—C23—H23A 119.8 H14B—O14—H14D 109 (8) C20—C24—C25 113.9 (5) H15C—O15—H15E 110 (7) C20—C24—H24A 108.8 Symmetry codes: (i) -x+2, y, -z. 109.8	H22A—C22—H22B	107.3	Cu3—O12—H12B	107 (5)
N10—C23—H23A 119.8 H13B—O13—H13D 109 (9) C22—C23—H23A 119.8 H14B—O14—H14D 109 (8) C20—C24—C25 113.9 (5) H15C—O15—H15E 110 (7) C20—C24—H24A 108.8 Symmetry codes: (i) -x+2, y, -z. Image: Comparison of the second seco	N10-C23-C22	120.5 (6)	H12C—O12—H12B	113 (7)
C22—C23—H23A 119.8 H14B—O14—H14D 109 (8) C20—C24—C25 113.9 (5) H15C—O15—H15E 110 (7) C20—C24—H24A 108.8 Symmetry codes: (i) -x+2, y, -z.	N10—C23—H23A	119.8	H13B—O13—H13D	109 (9)
C20—C24—C25 113.9 (5) H15C—O15—H15E 110 (7) C20—C24—H24A 108.8 Symmetry codes: (i) -x+2, y, -z.	С22—С23—Н23А	119.8	H14B—O14—H14D	109 (8)
C20—C24—H24A 108.8 Symmetry codes: (i) $-x+2, y, -z$.	C20—C24—C25	113.9 (5)	H15C—O15—H15E	110 (7)
Symmetry codes: (i) $-x+2$, y , $-z$.	C20—C24—H24A	108.8		
	Symmetry codes: (i) $-x+2$, y , $-z$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
N2—H2B···O8 ⁱⁱ	0.85 (8)	2.18 (8)	2.945 (7)	149 (7)

N4—H4B···O3 ⁱⁱⁱ	0.86 (7)	1.84 (7)	2.692 (8)	168 (7)	
N6—H6C····O7 ^{iv}	0.87 (7)	2.19 (7)	2.950 (8)	147 (7)	
N8—H8B…O11	0.85 (7)	1.80 (7)	2.650 (6)	173 (7)	
N10—H10A…O12 ^v	0.87 (8)	2.23 (8)	3.061 (9)	160 (7)	
N12—H12E…O6 ⁱⁱ	0.86 (7)	1.80 (8)	2.652 (7)	168 (7)	
O7—H7B···O4 ⁱⁱ	0.86 (8)	2.15 (8)	2.998 (7)	170 (7)	
O7—H7A···O15 ^{vi}	0.83 (8)	1.85 (8)	2.678 (7)	170 (8)	
O8—H8C···O14 ^{iv}	0.96 (7)	1.83 (7)	2.734 (6)	158 (6)	
O8—H8D···O1 ^{iv}	0.95 (7)	2.05 (7)	2.988 (6)	166 (6)	
O8—H8D···O2 ^{iv}	0.95 (7)	2.57 (7)	3.317 (6)	135 (5)	
O12—H12C···O9 ^v	0.85 (8)	2.40 (8)	3.032 (7)	131 (7)	
O12—H12C···O10 ^v	0.85 (8)	2.40 (8)	3.223 (6)	162 (7)	
O12—H12B…O13	0.85 (8)	2.03 (8)	2.698 (7)	134 (7)	
O13—H13B····O10 ^{vii}	0.84 (8)	1.92 (9)	2.661 (7)	147 (9)	
O13—H13D…O6	0.85 (9)	1.94 (9)	2.734 (7)	155 (8)	
O14—H14B…O5	0.85 (8)	1.92 (9)	2.701 (8)	153 (8)	
O14—H14D···O11 ^{vii}	0.84 (8)	1.97 (8)	2.757 (7)	155 (8)	
O15—H15C···O2 ^{viii}	0.86 (7)	1.92 (7)	2.722 (7)	154 (7)	
O15—H15E···O3 ⁱⁱⁱ	0.85 (8)	1.93 (8)	2.718 (6)	155 (7)	
Symmetry codes: (ii) $r+1/2 = v-1/2 = \tau$: (iii) $-r+1/2 = \tau$: (ii	$-3/2$ $\nu + 1/2$ $-\tau + 1$ (iv)	r + 1 - r + 3/2	v = 1/2 = -7 (vi) r v =	$1 = \frac{1}{2} (vii) = \frac{1}{2} = \frac{1}{2}$	

Symmetry codes: (ii) *x*+1/2, *y*-1/2, *z*; (iii) -*x*+3/2, *y*+1/2, -*z*+1; (iv) *x*, *y*+1, *z*; (v) -*x*+3/2, *y*-1/2, -*z*; (vi) *x*, *y*-1, *z*; (vii) *x*-1/2, *y*-1/2, *z*; (viii) *x*+1/2, *y*+1/2, *z*.

